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ABSTRACT

The advancement of non-linear processing methods for generic automatic clarification of turbid imagery has led
us from extensions of entirely passive multiscale Retinex processing to a new framework of active measurement
and control of the enhancement process called the Visual Servo. In the process of testing this new non-linear
computational scheme, we have identified that feature visibility limits in the post-enhancement image now
simplify to a single signal-to-noise figure of merit: a feature is visible if the feature-background signal difference
is greater than the RMS noise level. In other words, a signal-to-noise limit of approximately unity constitutes
a lower limit on feature visibility.

1. INTRODUCTION

In the previous development of non-linear image enhancement methods,' 2 our goal was to enhance the visual
realism of the recorded digital image to more closely approach the generally much better visibility of direct
scene perception by the human observer. For images acquired under turbid—fog, smoke, haze, snow, rain—
imaging conditions, there is already a close parity between the recorded image and the direct observation. So
the goal of enhancement now becomes fundamentally different: we wish to greatly exceed the performance
of the human observer. This is of particular interest for enhancing imagery acquired under turbid aviation
conditions. A generic automatic computation that does this provides the enabling technology for real-time image
enhancement that can be projected to the pilot’s heads-up display (HUD). This type of imagery is especially
important in commercial aviation during runway approach and landing and in general aviation during the entire
flight sequence from take-off to landing.

Our interest in enhancing images acquired under turbid imaging conditions, coupled with the scientific
insights* gained from previous purely passive retinex processing led us to formulate a more comprehensive
framework of active measurement and control of the image enhancement process: the Visual Servo (VS).
The major lesson learned from these scientific insights was that the good visual representations produced by
retinex processing all converged uniquely to an ideal statistical characterization. This, together with additional
constraints, led to the formulation of an entirely new set of visual measures for image contrast, lightness and
sharpness. These measures form the basis for VS controls that affect the level of image enhancement and,
hence, image quality. The VS additionally contains a special module for detecting turbid imaging conditions
and invokes special processing to produce maximal scene feature clarity.

This framework represents a form of visual intelligence: the software quantitatively assesses visual quality
before and after each enhancement step, and guided by these measurements, strives to achieve a standard high
level of visual quality. The VS controls still rely on non-linear image processing elements, so conventional end-
to-end systems analyses® ® cannot be employed to characterize the imaging and computing scheme as a whole.
Therefore we seek to understand how to characterize performance in lieu of having linear systems analysis as a
tool. In this paper we describe the Visual Servo concept, present results for diverse turbid imaging conditions
to indicate its generic performance as an automatic computation, and examine the critical issue of defining a
figure of merit for the post-enhancement feature visibility limit in turbid imaging conditions.
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2. THE VISUAL SERVO (VS) CONCEPT

Our extensive previous experience with retinex image enhancement,®? led us to conclude that further improve-
ments in enhancement were possible in terms of contrast and image sharpness and that the extreme narrow
dynamic range case of turbid imaging could be also be encompassed by a fundamental shift in approach away
from purely passive retinex processing to an active measurement and control system. The scientific insights*
gained from the experience of retinex processing of very large numbers of highly diverse images provided the
foundations for constructing entirely new visual measures for image contrast, lightness, and sharpness. Under-
lying this effort is the core idea that there is an ideal visual representation with consistent statistics for recorded
images® 4 and that the enhancement process is one of trying to make any image approach this ideal as closely as
possible. This core idea also relates to the visual inadequacy of the linear representation of recorded image data.
The idea rejects the notion of imaging as a replication process with quality defined by minimizing artifacts, and
shifts to the notion of imaging being a (highly non-linear) transformation process that seeks to achieve a good
visual representation whose statistics depart sharply from those of the linear representation.

With this background, the study of the overall global statistics of good visual representations revealed that
global statistics alone could not support the definition of visual measures.* There was insufficient capture of the
visual sense of contrast and lightness. However, regional spatial ensembles did provide a basis for quantifying
visual contrast and lightness. These were augmented by the development of a new sharpness measure which
together capture the most comprehensive and key visual elements of images. The measures have been extensively
tested, but are not yet ready for full technical exposition, so here we will discuss them and the resulting VS at
the conceptual and schematic level.

The Visual Servo is shown in Figure 1. The reason for calling the computation a “servo” stems from the
fact that it is based upon similar ideas to electro-mechanical servo systems of active measurement and control.
The basic flow for enhancing an image is as follows:

1. measure a key visual parameter

2. based upon the measured value, activate an enhancement control to improve the overall brightness, con-
trast and sharpness of the image

3. recompute the visual measure
4. if the measured value of the parameter achieves the high visual standard then terminate the process

5. otherwise, iterate until either the visual standard has been achieved or the VS has determined internally
that all reasonable enhancement processing has been exhausted
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Figure 1: The automatic visual servo.

Images acquired under turbid imaging conditions represent a special case for detection and processing due
to their extremely narrow, but unpredictable, dynamic range. For these images, the VS determines when this



very low contrast is occurring, and then invokes custom processing to achieve a very powerful enhancement.
This enhancement, from the results to be shown in Figure 2, appears to produce maximum feature contrast
that is limited only by the noise inherent to the imaging process.

3. VISUAL SERVO RESULTS FOR TURBID IMAGING

Turbid imaging covers a very wide range of imaging conditions where there is obscuration between the scene
and the imaging sensor due to particle scattering in the imaging medium. For atmospheric turbidity, the veiling
can be due to fog, smoke, haze, dust, rain, or snow, or some combination of these, such as smog. For underwater
imaging the turbidity is most often due to suspended cellular plant life, sediment particles, or some combination
thereof. In order to validate the generality of the computation for turbid imaging conditions, we have tested
the VS on images with very varied types and degrees of turbidity, as well as highly diverse scene content. The
result is an automatic, general purpose computation that is as applicable to aerial imagery as it is to underwater
imagery. All of the results shown in Figure 2 (right column) were obtained in the fully automatic mode, without
any additional tweaking of parameters or post-processing. Figure 2 (middle column) shows the performance of
the default MSRCR on the same images. It is evident from comparing the two columns why we moved away
from the passive MSRCR to the active VS for enhancing images acquired in turbid imaging conditions.

The turbidity detection and custom processing of the VS has worked extremely well in (almost) all the
cases that we have tested thus far. For lightly turbid conditions, the VS transitions smoothly to the non-turbid
enhancement processing, invoking different servo modules that provide “weaker” enhancements. The VS has
been tested with many hundreds of still color images, as well as with color and long, and short wave infrared
(IR) video imagery. The IR imagery was acquired from aviation sensors during test flights, or from sensors
mounted on a 250 feet high gantry to simulate flight conditions such as long throw views of landing approaches.

The performance of the VS has been outstanding for still and video imagery.* Additionally, it does not seem
to be sensitive to the type of particulate scattering involved. Good clarity—uvisibility distance improvement—
was achieved for moderate fog, severe haze, moderately thick smokes, heavy rain and snow as well as for
moderately thick underwater turbidities. Some clarity was possible for heavy fog conditions (see Figure 4).
This latter performance limitation in dense fog was true for all imagery types tested—color, short wave IR, and
long wave IR. For all but the dense fog case, sufficient clarity was achieved so that often all traces of obscuration
were removed. For cases of thicker turbidity, visibility as an increase in feature distance visibility was greatly
improved. For the cases where we acquired the image data ourselves, we could compare the performance of the
VS to what we had observed at the time of acquisition. In all cases, except severe fog, the VS result was far
better than our observed visibility.

A reasonable baseline for performance comparison is to compare servo results with those for the conven-
tional automatic histogram modification method—autolevels. Autolevels is a moderately powerful automatic
image enhancement technique which is quite useful for images with low contrast that do not contain regions
of saturation. It is a histogram stretch technique that adjusts the dynamic range of the displayed image based
upon a fixed parameter that determines the significant dynamic range of the input image. The dynamic range
compression adjustment of the Autolevels process is very different from the intrinsic dynamic range compres-
sion that the non-linear processing embedded in the VS provides. So the primary performance differences to be
expected are the result of the non-linear dynamic range compression. Figure 3 shows examples of a comparison
between the performance of Autolevels and the VS. It is clear from the figure that the VS has much better
performance than Autolevels. This implies that even for very narrow dynamic range imaging, the non-linear
dynamic range compression is still quite advantageous. The reason for this is that the very narrow dynamic
range is not stable regionally across the image. There is still lot of “shading” variation due to spatial lighting
effects within the narrow dynamic range of the turbid image. Of course there can be cooperative cases where
the lighting happens to be spatially uniform, and for these cases, the Autolevels performance will approach
that of the VS. The servo performance though should be much more all encompassing of the full complexity of
real turbid imaging conditions where shadows, and other lighting variations, as well as highly spatially variable
degrees of turbidity are going to be encountered within a particular image frame.

*Further examples of VS enhancements can be found on http://dragon.larc.nasa.gov/retinex.



Figure 2. The performance of the VS and the default MSRCR on images acquired under turbid imaging conditions. The
left column shows the original images; the middle column the default MSRCR, processed images; and the right column,
images that have been processed using the VS.



Figure 3. A comparison of automatic visual servo with autolevels. The left column shows the original images; the center
column shows the Autolevels enhanced images; and the right column shows the enhancements produced by the Visual
Servo.



Figure 4: Feature visibility limit of the visual servo

4. THE POST-ENHANCEMENT FEATURE VISIBILITY LIMIT

The dense fog case provides an instructive example for defining feature visibility limits since we encounter post-
enhancement opacity immediately and can readily track feature visibility deterioration within short distances.
This is shown in Figure 4 where the visibility deterioration occurs for a feature signal-difference approximately
equal to the root-mean-square (RMS) noise in the post enhancement image. For slightly closer distances or
slightly less turbidity, feature visibility improves rapidly. Even for very low RMS feature signal-difference-to-
noise ratios (& 3, the visibility is remarkably good as shown in Figure 4). This result appears consistently
in a number of other highly turbid test images, so we conclude that post-enhancement feature visibility can
be defined by this very simple figure of merit. Unlike more complex figures of merit which must account for
both feature signal level as well as feature signal difference, the post enhancement image domain is governed by
this noise limit alone. For sensors with lower noise, there will be a consequent improvement in visibility, and
ultimately the visibility limit should be set by the signal photon noise, or other scene noises (such as random
variations in scattering particle densities) for extremely high sensitivity sensors. This latter case assumes that
digitization is done at sufficiently high bit levels so that quantization noise is made lower than any scene noise
sources.



5. CONCLUSIONS

An outgrowth of previous developments in non-linear image enhancement was the realization that further
improvements in visual contrast and sharpness were needed and that the case of turbid imaging needed to be
addressed especially as a significant case for aviation imaging. For this case, a computation was needed which is
automatic so that it can be implemented in real-time hardware for enhanced pilot vision during poor visibility
flight conditions. These issues together with new scientific insights gained from retinex image processing, led
us to develop the VS which is more comprehensive than the previous passive retinex image processing. A set
of measures of visual contrast, lightness and sharpness were defined and tested which serve as the basis of
the active measurement and control VS system. The system does use non-linear image enhancement for the
servo control modules and therefore does not have performance that is derivable from the usual linear systems
analysis. Therefore we have extensively tested the VS of wide ranging types and degrees of image turbidity as
well as in general purpose imaging.

The servo computation performs well in all turbid imaging condition short of dense fog, and greatly exceeds
the human observer’s direct perception in all but the dense fog case. The servo handles all manner of moderate
fogs, severe hazes, heavy rain, smoke, and heavy snow conditions quite well. It has been tested on color still
images as well as color and FLIR video from aviation sensors in varied flight conditions—in and out of clouds,
severe haze, twilight-haze, moderate fogs and smoke among others.

Given the use of non-linear image processing, a major issue is how to define a figure of merit for feature
visibility limits. An experimental study of post-enhancement image data revealed that feature visibility was
limited solely by a very simple figure of merit compared to those used for unenhanced imagery. This figure of
merit is that features are visible post-enhancement as long as the feature/background signal-to-noise ratio is
greater than unity. Feature visibility increases rapidly for higher signal-to-noise ratios such that a S/N of ~ 3
has quite good visibility for example.

While our primary interest for the VS is clarifying aviation imagery during poor visibility flight conditions,
the servo performs well on underwater turbid images, and in poor visibility road conditions during driving.
Therefore we expect that computation has applications to a variety of turbid imaging conditions where a
human observer needs to be augmented visually to improve safety and visual performance.
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